Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Environ Entomol ; 52(1): 98-107, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36585828

RESUMO

Bactericera cockerelli (Sulc) (Hemiptera: Triozidae) is a vector of 'Candidatus Liberibacter solanacearum' (Lso), the pathogen that causes potato zebra chip. Zebra chip incidence varies regionally, perhaps because of geographic differences in species of noncrop hosts available to the vector and in susceptibility of those hosts to Lso. Native and introduced species of Lycium (Solanales: Solanaceae) are important noncrop hosts of B. cockerelli in some regions of North America. Susceptibility of native Lycium species to Lso is uncertain. We investigated the use of two native species of Lycium by B. cockerelli in South Texas and tested whether they are susceptible to Lso. Bactericera cockerelli adults and nymphs were collected frequently from L. berlandieri Dunal and L. carolinianum Walter. Greenhouse assays confirmed that B. cockerelli develops on both species and showed that Lso infects L. carolinianum. Molecular gut content analysis provided evidence that B. cockerelli adults disperse between potato and Lycium. These results demonstrate that L. berlandieri and L. carolinianum are likely noncrop sources of potato-colonizing B. cockerelli in South Texas and that L. carolinianum is a potential source of Lso-infected psyllids. We also routinely collected the congeneric psyllid, Bactericera dorsalis (Crawford), from both Lycium species. These records are the first for this psyllid in Texas. Bactericera dorsalis completed development on both native Lycium species, albeit with high rates of mortality on L. berlandieri. B. dorsalis acquired and transmitted Lso on L. carolinianum under greenhouse conditions but did not transmit Lso to potato. These results document a previously unknown vector of Lso.


Assuntos
Hemípteros , Lycium , Rhizobiaceae , Solanum tuberosum , Animais , Solanales , Texas , Doenças das Plantas
2.
Environ Entomol ; 50(6): 1416-1424, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34392334

RESUMO

The potato psyllid, Bactericera cockerelli (Sulc), is a major pest of potato (Solanales: Solanaceae) as a vector of 'Candidatus Liberibacter solanacearum' (Lso). Bactericera cockerelli colonizes potato from noncrop host plants, yet we do not yet know which noncrop species are the primary sources of Lso-infected psyllids. The perennial weed, Physalis longifolia Nutt., is a high-quality host for B. cockerelli and Lso under laboratory conditions but has been overlooked in recent field studies as a source of Lso-infected psyllids. Our current study had four objectives: 1) determine whether P. longifolia is abundant in potato-growing regions of Washington and Idaho, 2) determine whether stands of P. longifolia harbor B. cockerelli and Lso, 3) identify the psyllid haplotypes occurring on P. longifolia, and 4) use molecular gut content analysis to infer which plant species the psyllids had previously fed upon prior to their capture from P. longifolia. Online herbaria and field searches revealed that P. longifolia is abundant in western Idaho and is present at low densities in the Columbia Basin of Washington. Over 200 psyllids were collected from P. longifolia stands in 2018 and 2019, confirming that B. cockerelli colonizes stands of this plant. Gut content analysis indicated that a proportion of B. cockerelli collected from P. longifolia had arrived there from potato. Confirmation that P. longifolia is abundant in certain potato-growing regions of the Pacific Northwest, and that B. cockerelli readily uses this plant, could improve models to predict the risk of future psyllid and Lso outbreaks.


Assuntos
Hemípteros , Physalis , Solanum tuberosum , Animais , Idaho , Doenças das Plantas , Plantas Daninhas , Solanales , Washington
3.
J Econ Entomol ; 114(4): 1631-1637, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-33959766

RESUMO

The microlepidoptera, Bedellia somnulentella (Zeller), is an important pest of sweetpotato, Ipomoea batatas (L.) Lam. Damage by B. somnulentella occurs in the larval stage and when consuming the foliar mesophyll of I. batatas make the leaves brown, wrinkled, and reducing the photosynthetic area and the yield. The detection and management of this pest depends on knowing its biological cycle and identifying its natural enemies. The objectives of this study were to determine the life history of B. somnulentella feeding on I. batatas leaves and to survey parasitoids of this pest in the field. The duration and viability of B. somnulentella egg, larva, prepupa, pupa, and adult stages were evaluated under laboratory conditions. Cephalic capsule width was measured to determine the number of B. somnulentella instars, based on the Dyar rule and analyzed by the Akaike statistical model (AIC). The developmental period of B. somnulentella was 32.5 ± 0. 21 d with a viability of 75, 84, 100, and 84% for the egg, larva, prepupa, and pupa stages, respectively. The identification of this pest on the plants is possible from the third instar and in the pupal and adult stages. The parasitoid Conura sp. (Hymenoptera: Chalcididae) was identified parasitizing pupae of B. somnulentella and could be considered a potential natural enemy for the integrated management of this pest.


Assuntos
Convolvulaceae , Ipomoea batatas , Lepidópteros , Animais , Brasil , Larva , Controle Biológico de Vetores , Folhas de Planta , Pupa , Solanales
4.
Plant Dis ; 105(9): 2560-2566, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33455443

RESUMO

The potato psyllid Bactericera cockerelli (Sulc) (Hemiptera: Triozidae) is a pest of solanaceous crops (order Solanales), including potato (Solanum tuberosum L.) and tomato (S. lycopersicum L.). Feeding by high populations of nymphs causes psyllid yellows while adults and nymphs are vectors of the plant pathogen 'Candidatus Liberibacter solanacearum'. Foliar symptoms that were consistent with either 'Ca. L. solanacearum' infection or psyllid yellows were observed in 2019 on tomatillo (Physalis ixocarpa Brot.; family Solanaceae) grown within an experimental plot located near Saltillo, Mexico. This study had three primary objectives: 9i) determine whether the foliar symptoms observed on tomatillo were associated with 'Ca. L. solanacearum' infection, (ii) identify the haplotypes of 'Ca. L. solanacearum' and potato psyllids present in the symptomatic plot, and (iii) use gut content analysis to infer the plant sources of 'Ca. L. solanacearum'-infected psyllids. Results confirmed that 71% of symptomatic plants and 71% of psyllids collected from the plants were infected with 'Ca. L. solanacearum'. The detection of 'Ca. L. solanacearum' in plants and psyllids and the lack of nymphal populations associated with psyllid yellows strongly suggests that the observed foliar symptoms were caused by 'Ca. L. solanacearum' infection. All infected plants and insects harbored the more virulent 'Ca. L. solanacearum' haplotype B but one psyllid was also coinfected with haplotype A. The potato psyllids were predominantly of the central haplotype but one psyllid was identified as the western haplotype. Molecular gut content analysis of psyllids confirmed the movement of psyllids between noncrop habitats and tomatillo and indicated that 'Ca. L. solanacearum' infection of psyllids was associated with increased plant diversity in their diet.


Assuntos
Physalis , Rhizobiaceae , Solanum tuberosum , Liberibacter , México , Doenças das Plantas , Rhizobiaceae/genética , Solanales
5.
J Econ Entomol ; 113(6): 2595-2603, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-32990743

RESUMO

The potato psyllid, Bactericera cockerelli (Sulc), is a major pest of potato (Solanum tuberosum L.; Solanales: Solanaceae) as a vector of 'Candidatus Liberibacter solanacearum', the pathogen that causes zebra chip. Management of zebra chip is challenging in part because the noncrop sources of Liberibacter-infected psyllids arriving in potato remain unknown. Adding to this challenge is the occurrence of distinct genetic haplotypes of both potato psyllid and Liberibacter that differ in host range. Longleaf groundcherry (Physalis longifolia Nutt.) has been substantially overlooked in prior research as a potential noncrop source of Liberibacter-infected B. cockerelli colonizing fields of potato. The objective of this study was to assess the suitability of P. longifolia to the three common haplotypes of B. cockerelli (central, western, and northwestern haplotypes), and to two haplotypes of 'Ca. L. solanacearum' (Liberibacter A and B haplotypes). Greenhouse bioassays indicated that B. cockerelli of all three haplotypes produced more offspring on P. longifolia than on potato and preferred P. longifolia over potato during settling and egg-laying activities. Greenhouse and field trials showed that P. longifolia was also highly susceptible to Liberibacter. Additionally, we discovered that infected rhizomes survived winter and produced infected plants in late spring that could then be available for psyllid colonization and pathogen acquisition. Results show that P. longifolia is susceptible to both B. cockerelli and 'Ca. L. solanacearum' and must be considered as a potentially important source of infective B. cockerelli colonizing potato fields in the western United States.


Assuntos
Hemípteros , Physalis , Rhizobiaceae , Solanum tuberosum , Animais , Liberibacter , Doenças das Plantas , Solanales
8.
J Ethnopharmacol ; 247: 112257, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-31589968

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Hydrolea zeylanica L. Vahl. (Hydroleaceae) is an aquatic medicinal plant used as leafy vegetable in some parts of India. In south Odisha and Hazaribag district of Jharkhand, India, decoction of leaves is used as household remedy for diabetes. To our knowledge, no prior studies have examined the antidiabetic activity of H. zeylanica to validate its ethnomedicinal claim. PURPOSE: With this aim in mind, we examined the bioactivity of hydroalcohol fraction of leaves of H. zeylanica (HAHZ) in streptozotocin-induced oxidative stress in diabetic rats. MATERIALS AND METHODS: In vitro antidiabetic and free radical scavenging activities of different fractions of H. zeylanica were performed. The most effective bioactive fraction e.g. HAHZ was considered for kinetic studies to understand the mode of inhibition of α-glucosidase and α-amylase. To understand the chemical composition, GC-MS/MS and LC-MS/MS analysis of HAHZ were performed. To find out the molecular mechanism of action of HAHZ, streptozotocin-induced oxidative stress and metabolic changes in diabetic rats were studied. RESULTS: HAHZ demonstrated significantly higher radical scavenging and antidiabetic activities. Kinetic analysis revealed that HAHZ inhibited α-glucosidase competitively, and α-amylase mixed competitively. To understand the chemical composition, GC-MS/MS and LC-MS/MS analysis of HAHZ identified 32 compounds and among which R-limonene (0.52%), perillartine (0.41%), N-formyl-L-lysine (1.49%), limonen-6-ol, pivalate (1.43%), lidocaine (1.70%) and gamolenic acid (2.80%) were reported to have antioxidant and antidiabetic activities. HAHZ-400 mg/kg showed significant (p < 0.001) improvement in serum markers (SGOT, SGPT, ALP, total bilirubin, total protein, triglycerides, total cholesterol, HDL-C, LDL-C) and oxidative markers (MDA, SOD, CAT, GSH) in serum, liver and pancreas at effective dose dependent manner. In histopathological observation, HAHZ-400 mg/kg showed marked improvement in restoring cellular architecture of liver and pancreas. CONCLUSION: In diabetic rats, the improvement in glycemic control mechanism was achieved upon stimulating insulin secretion by R-limonene, perillartine, N-formyl-L-lysine, limonen-6-ol, pivalate, lidocaine and gamolenic acid of HAHZ.


Assuntos
Organismos Aquáticos/química , Diabetes Mellitus Experimental/tratamento farmacológico , Sequestradores de Radicais Livres/farmacologia , Hipoglicemiantes/farmacologia , Extratos Vegetais/farmacologia , Solanales/química , Animais , Glicemia/efeitos dos fármacos , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/induzido quimicamente , Etnofarmacologia , Feminino , Sequestradores de Radicais Livres/isolamento & purificação , Sequestradores de Radicais Livres/uso terapêutico , Humanos , Hipoglicemiantes/isolamento & purificação , Hipoglicemiantes/uso terapêutico , Índia , Insulina/metabolismo , Masculino , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/uso terapêutico , Folhas de Planta/química , Ratos , Estreptozocina/toxicidade
9.
Pest Manag Sci ; 76(4): 1273-1281, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31595621

RESUMO

BACKGROUND: The South American tree Solanum mauritianum Scopoli (Solanaceae) is a problematic invasive plant in numerous tropical, subtropical and temperate regions around the globe. Because conventional management approaches are not cost-effective, biological control provides an alternative approach. Gargaphia decoris Drake (Tingidae) is currently used as a biological control agent in South Africa and New Zealand. Considering the importance of climate in the establishment and success of a biological control agent, this study used ecological niche models (ENM) to identify areas where S. mauritianum is a problematic invader and where suitable conditions exist for G. decoris. Additionally, the climate niche dynamics of G. decoris were investigated and ENMs projected worldwide for the year 2050 were built. RESULTS: Our results indicate that most of the countries where S. mauritianum is problematic have suitable climatic conditions for G. decoris, and that the species can survive in climates with temperatures lower than those in its native range. For future climates, ENMs predict wider regions with favourable climatic conditions for G. decoris. CONCLUSION: Considering the results of this study, the prospects of using G. decoris as a biological control agent are good under current and future climates. Introduction of this agent could be considered in affected countries where it has not been released. © 2019 Society of Chemical Industry.


Assuntos
Heterópteros , Solanum , Animais , Mudança Climática , Ecossistema , Nova Zelândia , Solanales , África do Sul , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...